Deep Implicit Layers:
Neural ODEs, Equilibrium
Models, and Beyond

http://implicit-layers-tutorial.org

-5
Input/Hidden/Output

David Duvenaud J. Zico Kolter Matt Johnson
University of Toronto Carnegie Mellon and Google Brain
and Vector Institute . Bosc.zh Center for Al %% Goo gle Brain

: VECTOR arnegie o
% Tlglﬁglﬁ%b -\7\ INSTITUTE MelloriDr @ BOSCH
V * University

http://implicit-layers-tutorial.org/

What do we want to do with deep learning?

0—o[a £QJwQ o
ONO|CoOIDNW o

OOV —0Q|00 ¢
O =0 P QITSW
avoloxe|ac e

QoQWwaQ0 e~
OSVIAR No|CO0Y
0OV O DL
0 &OINON|ION

Semantic segmentation ~ Modeling continuous- Solving constrained
time systems optimization

v
i) ot A

Generative models Smooth density
estimation

“Traditional” deep learning domains Emerging applications

Language modeling

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019] 2

What do we want to do with deep learning?

Implicit Layers

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019]

What is a “layer”?

A layer, for the purposes of this tutorial, is a differentiable parametric function

Deep learning architectures are typically constructed by composing together many
such layers, then training the complete system end-to-end via backpropagation

E.Q.
linear
conv

— relu
—> > > self attention
_J LSTM Cell

- J

Explicit vs. Implicit layers

Virtually all commonly-used layers are
explicit, in that they provide a computation
graph for computing the forward pass, and
backprop through that computation graph

Implicit layers, in contrast, define a layer in
terms of satisfying some joint condition
of the input and output

* Many examples: differential equations,
fixed point iteration, optimization
solutions, etc

r —>

r —>»

Explicit layer

-
Compute

y = f(z)

.

~

—> Y

J

Implicit layer

/

-

Find y such that

g(x,y) =0

\

—> Y

J

Why use implicit layers?

. Powerful representations: compactly represent complex operations such as
Integrating differential equations, solving optimization problems, etc

. Memory efficiency: no need to backpropagate through intermediate
components, via implicit function theorem

. Simplicity: Ease and elegance of designing architectures

. Abstraction: Separate “what a layer should do” from “how to compute it”, an
abstraction that has been extremely valuable in many other settings

What do we want to do with deep learning?

Deep Equilibrium Models
Differentiable

Optimization

Neural ODEs +
Application to Flow-based Models

“Traditional” deep learning domains Emerging applications

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019]

This tutorial

Goal of this tutorial is to provide you with an understanding of the techniques,
motivations, and applications for implicit layers in modern deep learning

Heavy focus on:
« Mathematical foundations of implicit layers + automatic differentiation
« Examples including Neural ODEs, deep equilibrium models, differentiable
optimization
« Starter code and highlights of future directions

Detailed notes + code available in companion website:
http://implicit-layers-tutorial.org

http://implicit-layers-tutorial.org/

Outline

Background and applications of implicit layers
The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions

Outline

Background and applications of implicit layers

10

Myth: Implicit layers are new to neural networks

Reality: The history of implicit layers in deep learning goes back to the late 80s,
highlighted by the papers of [Pineda, 1987] and [Almeida, 1987] (papers below,
respectively), going by the name recurrent backpropagation

2. BACKPROPAGATION IN FEEDBACK PERCEPTRONS

Example 1: Recurrent backpropagation with first order units Consider a graded perceptron network, and designate by Xk the
external inputs (k = 1,...,K), by y; the outputs of the units (i = 1,...,N), by

. . 2 si the result of the sum performed at the input of unit i, and by op the
Consider a dynamlcal system whose state vector x evolves accordlng to the external outputs (pe O, where O is the set of units producing external

following set of coupled differentis outputs). The etwork are

¢y

where i=1,...,N. The functions g; are assuifit@" o< aitferentiable and may have
different forms for various po_pulation; of neurons. In this paper we shall make no
where apj and bgj are weig a bias term, and S; is the nonlinear

A dlﬁe rentlal equathn |ayer! function in unit i (usually a si'gmoid). In a feedforward perceptron, the
Largely fell out of use in favor of explicit network structure /* X€d point equation layer.

Much of the current efforts are a revisiting of this idea, using the tools and
technigues of modern architectures and automatic differentiation tools

11

The “Implicit Layer Winter”

Although implicit layers were not prominent in ML, they did find a great numlber of
use cases within applied engineering domains in the 90s, 2000s

+
E \
k—; Neur!l Net
Y
K
— 2 ral Net
k s /
Y \
N —
NNNNNNNN \ : >
= 1 Y,
Y \ 1 !
- [
N \ 1
Neural Net \ 1
y « Vot
N v
Re
X

[Rico-Martinez et al., 1992]
Runge-Kutta integrator with neural
network dynamics

coefficient space. On the right are the same projections of the long-term prediction
from the ODE network.

LP
QAT —
('a
‘I
R oA
'.. '-‘
u“m- s L&
NLPCq4
v A

s s N

TR Y AN\
(340 " f S |\ \
g o w08 o\
= [/ i ed i ¢ z \

of /’ ¥ of \ /

"o N
A% 10 -5 0 A5 10

. - q -.6
NLPC, NLPC,

Figure 8. Comparison of the experimental and predicted attractors in NLPC
space for the continuous-time model.

[Rico-Martinez and Kevrekidis, 1995]
Modeling carbon monoxide crystallization using
differentiable implicit trapezoidal integration -

Differentiable optimization

0 DJ (6)
h L~ o N
@ ﬂ‘.,'____{.--:'. ; E X = >y
@ e ‘ Dj)—— "] —— D)
E _ u/
Structured Variational Autoencoder Deep Declarative Networks
[Johnson et al., 2016] [Gould et al., 2019; Gould et al., 2016]
Differentiate through graphical model inference Parameterize layers as general (non-convex)
optimization problems
A
i (Xpy |\ () PyTorch
Zig1 = argmin ézTQ(zz)z —I—p(zi)Tz x*(8) = :.rg;zlln f((x;.l:)))<0 T
subjectzto A(z;)z = b(z;) iRk ensor
G(z;)z < h(z) . CvxpylLayers
OptNet . [Agarwal et al.,, 2019]
[Amos and Kolter, 2017] Differentiable convex optimization easily

Differentiable quadratic programming layer integrated with automatic differentiation libraries ;

(Smoothed) combinatorial optimization

Prob Relaxed Relaxed Prob

inputs 1inputs . outputs outputs

~hpu * m’k SDP relaxation g & wtpu

Z,€[0,1] mp v, ER" mp . = U, CR" =p 2,€(0,1]
(weight S)

YieT Yoe O

Relax Round

Prob=po 1 =»Prob

SatNet

[Wang et al., 2019]
Solve a smoothed version of a MAXSAT
satisfiability problem via differentiable
semidefinite programming

Differentiable submodular optimization
[Djolonga and Krause, 2017]
Differentiate through submodular
minimization problems, such as graph cuts
(application to image segmentation)

14

Deep equilibrium models

U

[Ba| et al., 201 9, Bai et al., 2020] v v v
O O O O
Represent modern deep networks using vOw|Olw w0
a single implicit layer O O ” Q_’ _’Q_’
9dg g-

Near state of the art performance in
large scale NLP and vision tasks such
as semantic segmentation (using similar
training approaches / network sizes)

15

Ordinary Differential Equations

If a vector z follows dynamics f:

3
O —~
- S
qv] e
N -~
< =
- N——" N——"
= 0 S
. I S—~
s ®)) W
~ cC ..
N i —
N——" nt
= 8% un
| = £ -
Z_._L o - =
TIS B N
—
~ D ||
N——"
Zmu A~
=R
L ©
r_lr Z
ng
c 2
O £
—
-~

NN NN N T N\ T
NN NN S N N\ \ R T
SSSLSOOAONNNYNNND
35" N NN
NN N N NN N N N U U\
S N N N N S N N N RN

N N NN N D N N N N NN
NSNS NN N O U U
NN N NN N N N U U W
NN N N N N Y
SN N N N N A
SOOI NN NN LY
SONONONNN N N NN V)
SONONN N N NN VL

~ - =

NONN N N NN L

NN N N NN /S S
NN N N N e
NN N D

~ O~ N N~ - = -

/S S S S ST
/! /S S S S ST
AV AV AV AV G
[/

\
\
\
\
\
\

/s s s S S
s S s s s 7
I s s s

|
_
I
/
/
|
*
|

\
_
*
|
_
\
\

An implicit layer: y = odeint(f, x,ty,t{,60)

16

What are Neural ODEs good for?

Equivalent to a resnet with infinitely many
layers, each making an infinitesimal

change.

Can be used anywhere a ResNet can.

In classifiers, data should be separable
at output.

Dissecting Neural ODEs. Massaroli, Poli, Park,
Yamashita, Asama (2020)

17

What are Neural ODEs good for?

Equivalent to a resnet with infinitely many

layers, each making an infinitesimal
change.

Can be used anywhere a ResNet can.

In classifiers, data should be separable

at output.

s=0.00

-— — — ‘--‘——-‘——-wq—-——-—&\\\\\\ ~
—— e U TN N e L

2.5 17* ((((

P e NS ST

-
1.0
0.5
0.0

e - o fF N
-0.5 ' “ P
.

-1.0 - 3 B orh i i i it s g
-1.5 -1.0 -05 00 05 10 15 2.0 25

TorchDyn: A Neural Differential Equations Library.
Poli, Massaroli, Yamashita, Asama Park (2020)

18

Continuous-time Physical Models

Incorporate known structure or constraints, e.g. Hamiltonians, Lagrangians

. (LN (oL | 9k«
1=\ 9¢2 oq 10q0q

Baseline NN Lagrangian NN

o~

Hamiltonian Graph Networks with ODE Integrators. Sanchez-Gonzalez, Bapst, Cranmer, Battaglia (2019)
Lagrangian Neural Networks. Cranmer, Greydanus, SHoyer, Battaglia, Spergel, Ho (2020)

Differentiable Molecular Simulations for Control and Learning. Wang, Axelrod, Gomez-Bombarelli (2020)
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control. Zhong, Dey, Chakraborty (2020)

Continuous Normalizing Flows

. A TN
5 |
| o Q ‘ _/ \
Transforms a simple density into a $

complex parametric density.

Change of variables formula easier to
compute instantaneously.

p(zt,)

Continuous Normalizing Flows

Score-based training
scales to 1024x1024

Exact density
avallable, but
expensive

[Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole.
Score-Based Generative Modeling through Stochastic
Differential Equations, 2020]

Continuous Normalizing Flows

Conditional inpainting and
colorization without
retraining.

Requires iterative
sampling procedure.

Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole.
Score-Based Generative Modeling through Stochastic
Differential Equations. 2020

Continuous Normalizing Flows

Can also parameterize
homeomorphisms
(non self-intersecting maps)

PointFlow: 3D Point Cloud Generation with
Continuous Normalizing Flows.
Yang, Huang, Hao, Liu, Belongie, Hariharan (2019).

Continuous Normalizing Flows

Can build flexible parametric density models on manifolds (e.g. spheres)

Thanks to Emile Mathieu

Fire

Riemannian Continuous Normalizing Flows [Mathieu and Nickel, 2020]
Neural Ordinary Differential Equations on Manifolds. [Falorsi and Forré, 2020]
Neural Manifold Ordinary Differential Equations. [Lou et al., 2020]

Applications in biology

Used for modeling Yo g
cellular development | N gx
trajectories. W

j %
Used in convolutional [Tong et al. “TrajectoryNet: A Dynamic Optimal Transport
u-net segmentation for Network for Modeling Cellular Dynamics”, 2020]
colon screening.

: mage — Ground-truth U-Net U-ResNet U-Node

Neural Ordinary Differential Equations for Semantic Segmentation
of Individual Colon Glands. [Pinckaers and Litjens, 2019].

Continuous-time Time Series Models

Can deal with data K |
collected at irregular mr L \' f|| |' \' | |'

. . e L R R RN I (e AR AR RN
Intervals natively. MechVent | N |

Na |
NIDiasABP HIIEEEEEEN I

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0
Time (hours)

by @ @) &y

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series.

Kidger, Morrill, Foster, Lyons (2020)

GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de
Brouwer, Simm, Arany, Moreau. (2020)

10 —20

Other Uses of Implicit Gradients

Can use implicit gradients to tune Dataset Dlstjllatlon
millions of hyperparameters. Bee Beetle Bicycle Bottle

. .‘.m1 "
tAy"

o NF AR
:?S LY

Can Castle Caterpillar Cattle

Can also be used for meta-learning if
Inner loop is trained to convergence.

Meta-learning (IMAML)

Meta-Learning with Implicit Gradients. Rajeswaran, Finn, Kakade, Levine (2019)
Optimizing Millions of Hyperparameters by Implicit Differentiation. Jonathan
Lorraine, Paul Vicol, David Duvenaud (2019)

Gradient-Based Optimization of Hyper-Parameters. Yoshua Bengio. (2000)

27

The mathematics of implicit layers

Outline

28

Consider a traditional deep network applied to an input x

)

X

—/

Motivating a simple implicit layer

)

<1

Wi
—>

—

)

Z9

W
—>

—

)

<3

—

)

Rk

N

zip1 = 0(W,z; + ;)

We now modify this network in two ways: by re-injecting the input at each step,
and by applying the same weight matrix at each iteration (weight tying)

)

X

N/

)

<1

W
—>

\T/

)

Z9

W
—>

\T/

)

<3

4%

..

&f/

4%

—>

)

Rk

\T/

29

Iterations of deep weight-tied models

With a weight-tied model of this form, we are
applying the same function repeatedly to the
hidden units

In many situations, we can design the network
such that this iteration will converge to some
fixed point, or equilibrium point

2 =0c(Wz*+x)

This is precisely a recurrent backpropagation
network, or a (minimal) deep equilibrium model

W W 14 14
T 21 Z9 z3 ce 2L

))

9 W
r —» 2*
___/ N

30

Simple instantiation: A tanh fixed point iteration

Let’s consider a very simple form of such a fixed point
layer, iterating:

How do we compute the fixed point”? o) |W
2" =tanh(Wz* + x) r —3 o

How do we integrate such a layer with backprop” Does
the derivative exist?

To answer this, let’s see a quick demo

31

Differentiation notation

f:R" - R™

Differentiation notation
f:R" - R™
of(x) : R" — R™

df(x) € R™*"

Differentiation notation

dof(r,y) = dg(x) where g(z) = f(z,y)

O1f(x,y) = 0g(y) where g(y) = f(x,y)

The implicit function theorem

Let f: RP x R" — R™ and ag € R?P, zp € R" be
such that

1. f(ag,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 04 f(ag, 20) € R™*™.

35

The implicit function theorem

Lot [ROBORMR ond o) € R?, 2 € R" be [(0.2) =’ + 22 —1=0

such that

2
1. f(ag,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 04 f(ag, 20) € R™ ™.

A

36

The implicit function theorem

Lot MR -nd ao € BP, % € R be f(0.2) =0’ +22~1=0

such that

2
1. f(ap,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 04 f(ag, 20) € R™ ™.

A

37

The implicit function theorem

Let o f « RE X R™ —R"™ and ag € R?, 29 € R" be f(aaz):a2+22_1:0
such that)
2z
1. f(ap,20) =0, and
2. f is continuously differentiable with non-singular —
Jacobian 04 f(ag, 20) € R™*™.
Then there exist open sets S,, C R? and S,, C R" . \
containing ag and zg, respectively, and a unique
continuous function z* : S,, — 5, such that
1. 20 — Z*(CL()),
2. f(a,z*(a)) =0 VaeS,,, and
\

3. z* is differentiable on S, .

38

The implicit function theorem

Let [f ¢+ RPE X R®™ — R™ and ag € R?, 25 € R” be fla,2) =a*+2°—1=0

such that
1. f(aog,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 04 f(ag, 20) € R™*™.

Then there exist open sets S,, C R” and S,, € R"

<

containing ag and zg, respectively, and a unique
continuous function z* : S,, — 5, such that

1. 20 — Z*(CL()),
2. f(a,z*(a)) =0 VaeS,,, and

3. z* is differentiable on S, .

39

The implicit function theorem

Lot MR -nd ao € BP, % € R be f(0.2) =0’ +22~1=0

such that
1. f(ag,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 01 f(ag, z9) € R™*™.
«<

Then there exist

containing ag and zg, respectively, and a unique
continuous function“ such that

1. 20 — Z*(CL()),

2. [flas2*(a)) =0 Va & Sy, and

I i diffrentiable on S,

40

The implicit function theorem

Let [f ¢+ RPE X R®™ — R™ and ag € R?, 25 € R” be fla,2) =a*+2°—1=0

such that)

Z

1. f(ag,20) =0, and

2. f is continuously differentiable with non-singular
Jacobian 0 f(ag, zp) € R™*".

Then there exist open sets S,, C RP and S,, C R"

<

containing ag and zg, respectively, and a unique
continuous function z* : S,, — 5, such that

1. 20 — Z*(CL()),

2. f(a,z*(a)) =0 VaeS,,, and

3. z* is differentiable on S, .

41

The implicit function theorem

4.1 Ordinary Differential Equations

There is a strong connection between the implicit function theorem and the theory
of differential equations. This is true even from the historical point of view, for Pi-
card’s iterative proof of the existence theorem for ordinary differential equations
inspired Goursat to give an iterative proof of the implicit function theorem (see
Goursat [Go 03]). In the mid-twentieth century, John Nash pioneered the use of
a sophisticated form of the implicit function theorem in the study of partial dif-
ferential equations. We will discuss Nash’s work in Section 6.4. In this section,
we limit our attention to ordinary (rather than partial) differential equations be-
cause the technical details are then so much simpler.

The Implicit Function Theorem: History, Theory, and Applications. Krantz and Parks (2002)

42

The implicit function theorem: derivative expression
fla,z*(a)) =0 Va e S,

The implicit function theorem: derivative expression
fla,z*(a)) =0 Va € S,,

Oof(a,z*(a))+01f(a,z*(a))0z*(a) =0 Va e S,,

do f (a0, z0) + 01 f (a0, 20)02*(ap) = 0

The implicit function theorem: derivative expression
fla,z*(a)) =0 Va € S,,

Oof(a,z*(a))+01f(a,z*(a))0z*(a) =0 Va e S,,

a()f(a’()) ZO)

01 f(ag, 20)02"(ag) = 0

0z"(ag) = —[01 f(ag, z0)] ' 0o f (ao, zo)

Punchline: can express Jacobian matrix of solution mapping z*
in terms of Jacobian matrices of f at solution point (ag, zp).

45

Differentiation of fixed point solution mappings

20 — f(ZO, CLO)
z*(a) = f(2*(a),a)
0z*(ag) = 0o f(z0,a0)02"(ag) + 01 f(20, ao)

Differentiation of fixed point solution mappings

20 = f(20,a0)
2*(a) = f(z"(a),a)
92" (a0) = 8o f (0. a0)d=" (a0) + B f (2. ao)
0z*(ag) = [I — 0o f(20,a0)]~ 01 f (20, ao)

Connecting to automatic differentiation

1. Jacobian-vector products: v+ df(x)v
JVP / push-forward / forward-mode

build Jacobian one column at a time

2. vector-Jacobian products: w — w'df(x)

VJP / pull-back / reverse-mode

build Jacobian one row at a time

48

VJPs for fixed point solution mappings
0z*(ag) = [I — 0o f(20,a0)]” 01 f (20, ao)

w'0z*(ag) = w'[I — 0y f(29,a0)] 101 f (20, ao)

=|u' 0 f(20,a0) VJPs!

where u' = w' Hu'dy f(20,ao)

Punchline: backward pass solve is a (linear) fixed point
in terms of VJPs!

49

Deep Equilibrium Models

Outline

50

Deep Equilibrium Models

The simple recurrent backpropagation cell we used previously was quite limited, in
practice we want to find an equiliorium point of a more complex “cell”, and use
this as our entire model (plus one additional linear layer)

2 =0c(Wz"+) 2= fe",x,0)

As motivated by the discussion on implicit differentiation, we additionally do not
care how we solve for the equilibrium point, and can use any non-linear root
finding algorithm to do so (and also to solve the backward pass)

51

[Bai, Kolter, Koltun “Deep Equilibrium Models”, NeurlPS 2019]

How to train your DEQ

Forward pass:
» Given (z,y), compute equilibrium point z*

2= f(z",z,0)
« Compute loss as some function of z*, £(z*, y) () L[
r —» z*
Backward pass: Compute gradients using implicit

function theorem: * f(o 9)
_1))
86(6) — 806(2*7y)(1_80f(2*7$79)) an(Z*,ZC,H)

| J
I

Implicit differentiation-based solution, solve via indirect method

52

More details: how to compute the fixed point?

In practice, how do we compute the fixed point z* = f(2*, x, #) (and the linear
fixed point for the backward pass)?

Many possible approaches, but one method that works well in practice is

Anderson Acceleration [Anderson, 1965; Walker and Ni, 2011], a generic method
for accelerating fixed point iterations

For the backward (linear) pass, Anderson acceleration is equivalent to the GMRES
Indirect method

53

DEQs “One (implicit) layer is all you need”

Theorem 1: A single-layer DEQ can represent any feedforward deep network
Proof intuition: “Stack” all hidden layers together, and let f be “shifted”

application of all layers (important note: just for theory, not what is done in
practice)

Theorem 2: A single-layer DEQ can represent any multi-layer DEQ

Proof intuition: Two equilibrium models can again be represented as a single
equilibrium model with layer again “stacked” together

But doesn’t address... existence of equilibrium point”? uniqueness? stability?

54

Language modeling: WikiText-103

B Perplexity ®Memory (GB)

35.8
324
29.2 29
247 036 030
18.7
12
9

4.8

3.3 3.3

1.1

N il [o

Transformer-XL DEQ-Transformer 70-layer TrellisNet ~ DEQ-TrellisNet Transformer-XL DEQ-Transformer Transformer-XL

. Small Small " . : & Medium Medium : lXLarge(TPU)'

\ 1 | 1
5M Params 45M Params 72M Params 203M Params

Multiscale deep equilibrium models

Key idea: maintain multiple spatial scales within the hidden unit of a DEQ model,
and simultaneously find equilibrium point for all of them

Input Injection

Residual
Block

_—

UOTIN]0SY YSI

X 7z, : Hy x W1 x C} z’lk

Residual
Block

—>Loss L

Zo . HQ X W2 X 02
Residual
Block
z3 : Hy x W3 x 03

Residual
Block
z, H, x W,, x C,,

UOIINJOS9Y MO

[Bai, Koltun, Kolter “Multiscale Deep Equilibrium Models”, NeurlPS 2020]

Accuracy (%)

ImageNet Top-1 Accuracy

/6.8
751
2.9

ResNet-18 ResNet-50 HRNet-W18 Single-stream
DEQ

9.7 79.2
771
75.5 I

MDEQ ResNet-101 DenseNet-256 MDEQ
] | J

I
“Small” models (13-21M params)

I
“Large” models (52-81M params)

o7

mloU (%)

Citiscapes mioU

ResNet-18-B MobileNetV2Plus ~ HRNet-V2-W18 MDEQ PSPNet DeeplabV3 HRNet-V2-W48 I\/IDEQ

| i

“Small” models (4-15M params) “Large” models (52-81M params)

58

Visualization of Segmentation

Neural ODEsS

Outline

60

If a vector z follows dynamics f:

Ordinary Differential Equations

+~
e
—~
¥®) (n)
s =
o = =
(a) -~ N
e ~— —_
./ N S—
—~ +— —
- qv) +
— o) ._LO
2 2.
S~ ..m:_bl I_I
| %e 3
Z_,_L - £ =
—~= |
— C
+~ D ~~
~— —
N O +«~
TE w
£ ®
[rm—
(@)
-
c 2
O £

S N N N N S N N N RN
AN N N N N N N N U U U
NSNS NN N N N U U
NN NN NN N N N N U
NN NN N N N N A

SN N N N N A
SO N N N NN
SONONONNN N N N N
SONONN N N NN VL

-~ - -

NONN N N NN L

NN N NN AN /S S
NN N N N e
NN N D e ed

/S S S S ST
/! /S S ST
/! /7 /S S S ST

—~_— e e e — —

,
‘
I
/
/
|
*
|

61

An implicit layer: y = odeint(f, x,t,,t,,0)
gradients always exist. (N0 relu, but tanh fine)

For continuously differentiable and Lipshitz f,

ty

How to Solve ODES?

Simplest way: Euler’s method. Take -
steps of size h in direction of f f w—

_ | = Euler

Looks just like a residual network!

From ResNets to ODE-Nets

Residual Network
5
def f(z, t, ©): 4 \\ !
return nnet(z, o6[t]) 5 *
def resnet(z, 9): o, ‘
for t in [1:T]:
z =z + f(z, t, 9) 1 !
return z

-5 0 5
Input/Hidden/Output

From ResNets to ODE-Nets

Residual Network
5
def f(z, t, ©): 4 \\ !
return nnet([z, t], ©) 5 *
def resnet(z, 9): o, ‘
for t in [1:T]:
z =z + f(z, t, 9) 1 !
return z

-5 0 5
Input/Hidden/Output

From ResNets to ODE-Nets

def f(z, t, 0):
return nnet([z, t], ©)

def ODEnet(z, 9):
return ODESolve(f, z, 0, 1, ©6)

™S
y) ¢
' I

Residual Network

-5 0 5
Input/Hidden/Output

ODE Network

—
[
[
-

#

|
Hiiva

-5
Input/Hidden/Output

5

Residual Networks vs ODE solutions

Example: Fit y = 2 Output'y

ResNet can learn non-bijective 08
transformations.

Depth

-5 0 5 10 15 20 25

Residual Networks vs ODE solutions

Example: Fit y = x* Output y

1.0 1

////

Ode-net can only learn bijective 08
transformations.

0.6

: 0.4 /
0.2 1
0.0 1
-5 0 5 1'0 15 2b 2'5

Adaptive ODE Solvers

Adaptive solvers: ODE Network

« Usually fit a local polynomial to dynamics
* Jry to estimate extrapolation error

* Need fewer evaluations of dynamics
function f when dynamics are simple /
well-approximated

« Can adjust tolerance / precision of solver
at any time

-5 0 5
Input/Hidden/Output

Dynamics Become Increasingly Complex in Training

Dynamics become more demanding to

compute during training.

P J J O 150

©
Adapts computation time according to E .
complexity of dynamics. O '
| Ly 10.0

Also happens in DEQs LZI.
7.5

0 25 50 75 100

(d) Training Epoch

How to train an ODE net?

Can backprop through solver operations, but high memory cost.

L(A) =L (: f(z(t), ¢, 9)dt>

oL _,

00

Continuous-time Backpropagation

Standard Backprop: Adjoint sensitivities:

(Pontryagin et al., 1962):

OL 0L 0f(z,.0)
0z, O0z,,., Oz,

9 0L OL Of(z(t).0)
Otdz(t) oal(t) Oz

oL OL Of (z,0)) aL af< (t),
89_28Zt 0 __ft: 0

>dt

Continuous-time Backpropagation

Can build adjoint dynamics with autodiff,
compute all gradients with another ODE

solve:

Adjoint sensitivities:
(Pontryagin et al., 1962):

def f_and_a([z, a, d], t):
return [f, -a*df/da, -a*df/do)
9 0L OL Of(z(t).0)

[z0, dL/dx, dL/de] = =
ODESolve(f_and_a, Ot Oz(t) Oz(t) 0z
[z(tl), dL/dz(t), 0], tl, tO) oL t, OL 0f(z(t),0)

R O

0(1) Memory Gradients

No need to store activations, just run
dynamics backwards from output.

Can do similar trick with Reversible
ResNets (Gomez et al., 2018), but
must restrict architecture.

This introduces extra numerical error. if
mismatch is detected, can use
checkpointing to force a better match.

2(to) State

Adjoint State

Deep Equilibrium Models vs Neural ODEs

Both have:
« Constant memory training
e Adjustable compute vs precision at test time
* Infinite / adjustable depth

Use neural ODEs when:
* You care about the trajectory (continuous time series, physics)
 Building normalizing flows (easier change of variable sometimes)

74

Normalizing Flows

TH T Dat X Latent Z
Tractable probabilistic models ata space atent space
based on change of variables

Requires an invertible
transformation

Density Estimation using Real NVP. Dinh, Sohl-Dickstein, Bengio (2017)

Continuous(-time) Normalizing Flows

Change of variables theorem:

Jol i
det 8—

r1 = F(z0) = p(z1) = p(x0) Oxg

Determinant is O(D?) cost

Must design architectures to have
structured Jacobian

Continuous(-time) Normalizing Flows

Change of variables theorem:

|1
det 8_

8x0

r1 = F(r9) = p(z1) = p(z0)

Determinant is O(D?) cost

Must design architectures to have
structured Jacobian

. %,
NN

(Low rank) (Sparse) (Lower
triangular)

Jacobian
SR R

Continuous(-time) Normalizing Flows

Change of variables theorem:

|1
det 8—

r1 = F(x9) = p(z1) = p(x0) o

Determinant is O(D?) cost

Must design architectures to have
structured Jacobian

E—E &h

(Low rank) (Sparse) (Lower
tnangular)

Jacobian
Bl Al

Instantaneous change of variables:

W plar),) = 28PE0) —tr(

ot

Trace is always O(D) cost.

Trace allows flows at linear cost.

(Arbitrary)

Continuous(-time) Normalizing Flows

Target Densit

Instantaneous change of variables:

dz Ologp(x(t)) of
i flz(t),t) = 5 = —tr ()

Trace is always O(D) cost.

: Tr llows flows at linear cost.
Samples Vector Field ace allows
WA
» ’ A |
(o 4-: i :V:‘l \

\ W7 A) 4

y // | ¥ 1
1) -\
-y | ‘L% 4 ==
744 / y ‘*\ . v o=

e b St (Arbitrary)

L
LN & =
|
|

Stochastic Estimation for CNFs

Divergence of a neural network can be be computationally expensive

log p(x) = log p(z / divf dt trace of Jacobian is
expensive

= log p(z tr (Jr) d

Stochastic Estimation for CNFs

Divergence of a neural network can be be computationally expensive

log p(x) = log p(z / divf dt trace of Jacobian is
expensive

= log p(z tr (Jr) d

(Hutchinson’s

tl”(A) — EUNN(O,l) [UTAU] tra(?e

estimator)

Stochastic Estimation for CNFs

Divergence of a neural network can be be computationally expensive

T
log p(x) = log p(z) + / div f dt
0 vector-dacobian products

T are cheap
= log p(2) —I-/ tr(Jy) dt
0

T
= log p(z) + IE’UNN(O,I) [/ ’UTJf’U dt]
0
(Hutchinson’s

tl"(A) — EvNN(O,l) [UTAU] race

estimator)

Stochastic Estimation for CNFs

|

vector-dacobian products

are cheap

g T)
ﬂn-../.p. M ~ 7(..

a ¥ e AN
Nt n\..fl.um.

T
log p(2) —|-/ div f dt
0

log p(x)

Divergence of a neural network can be be computationally expensive

What about numerical error?

|s density accurate? 1o-1
Only up to solver prevision, § B
but can choose precision at Iy 10
test time. —
| 107
—
1077

‘IO‘B 107 10°° 10> 104 103 102 10!
Solver Tolerance

FFJORD: Free-form Continuous Dynamics for

Scalable Reversible Generative Models
Grathwohl, Chen, Bettencourt, Sutskever, Duvenaud

Continuous Normalizing Flows

Can also parameterize
homeomorphisms
(non self-intersecting maps)

PointFlow: 3D Point Cloud Generation with
Continuous Normalizing Flows.
Yang, Huang, Hao, Liu, Belongie, Hariharan (2019).

Continuous Normalizing Flows

Can build flexible parametric density models on manifolds (e.g. spheres)

Thanks to Emile Mathieu

Fire

Riemannian Continuous Normalizing Flows [Mathieu and Nickel, 2020]
Neural Ordinary Differential Equations on Manifolds. [Falorsi and Forré, 2020]
Neural Manifold Ordinary Differential Equations. [Lou et al., 2020]

Slide credit: Yang Song

Score-based generative modeling via SDEs

Prior Perturbed distributions Data

—— Reverse-time SDE trajectories

X = o(t)dw) dx = —0? t)Vy logpi(x)dt + o(t)dw

Time reversal

Score-Based Generative Modeling through Stochastic Differential Equations. Song, Sohl-Dickstein, Kingma,
Abhishek, Ermon, Poole. (2020)

Slide credit: Yang Song

Turning a reverse diffusion SDE into ODE

Probability flow ODE (ordinary differential equation)
dx = 0(1)dW e dx = —=0(t)*V, log p; (x)dt
T 2
{p:(x) }1—0

Data Forward trajectories Prior

v

po(x) pr(x)

Score-Based Generative Modeling through Stochastic Differential Equations. Song, Sohl-Dickstein,
Kingma, Abhishek, Ermon, Poole. (2020)

Score-based Continuous Normalizing Flows

Score-based training
scales to 1024x1024

Exact density available,
but expensive

[Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole.
Score-Based Generative Modeling through Stochastic
Differential Equations, 2020]

Score-based Continuous Normalizing Flows

Conditional inpainting and
colorization without
retraining.

Requires iterative
sampling procedure.

Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole.
Score-Based Generative Modeling through Stochastic
Differential Equations. 2020

Neural ODEs for Time Series

Continuous-time Physical Models

Incorporate known structure or constraints, e.g. Hamiltonians, Lagrangians

. (LN oL 9L
1=\ 92 oq 10404

Baseline NN Lagrangian NN

7

Hamiltonian Graph Networks with ODE Integrators. Sanchez-Gonzalez, Bapst, Cranmer, Battaglia (2019)
Lagrangian Neural Networks. Cranmer, Greydanus, SHoyer, Battaglia, Spergel, Ho, (2020)

Differentiable Molecular Simulations for Control and Learning. Wang, Axelrod, Gomez-Bombarelli (2020)
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control. Zhong, Dey, Chakraborty (2020)

Irregularly-timed datasets

K

Lactate | |

Mg

MAP
MechVent
Na
NIDiasABP

1l |I‘I

0.0

6.0

12.0

18.0 24.0 30.0

Time (hours)

36.0 42.0 48.0

Most patient data, business data irregularly sampled through time.

Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs

How to handle these data without binning?

93

Continuous-time Time Series Models

Can deal with data collected
at irregular intervals natively. e

——— —— e —— —

Can jointly train dynamics,
likelihood, and recognition
network as a VAE.

@

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series.

Kidger, Morrill, Foster, Lyons (2020)

GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de
Brouwer, Simm, Arany, Moreau. (2020)

Continuous-time Time Series Models

Sample 0 (data space) Sample 1 (data space) Sample 2 (data space)
2.5 -) 2.5 - '. ® ® 2.5 - q
- 5 . n oo = .
20- o8 :O: 20- o i by 3 20- o° r' 4
L]

. : Y
1.5—0\.'\.;—-‘/ 15- z__;é’ 15- b
% - %] % -

1.0-e .« S ; 10-° ; e - & 10-e @ s
N . 9 o & 4
0.5 - o, & % 0.5 - J . 0.5 - - .
. . . . e
0.0 - | | . 0.0- . . 0.0 - * .
0 2 4 0 2 4 0 2 4
Time Time Time
Latent trajectories z(t) (latent space) Slice of vector field (latent space) Samples from prior (data space)
- 6-—g —
— =
- ——— A aad
0- 4 ____g-/ k. '
/ 2n ::i/): >
fr‘v <3 E 0.4 =
N 5 J 0 - < o > x
/ e —— ‘f-—-b-——_
= = _ :-.\—’\ ’/—'——'—__ 0.2 -
— dim '\'0\ //_-_,-"":.—-—
0 : —_—
d!m 1 —a _\ ?;K;_ 0.0 -
1 1 | —6 "I‘\-ml IA*-—.—-_-T_- | | |
0 2 4 -5.0 -25 00 25 50 0 2 4
Time Time

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud. 2020

Neural Stochastic Differential Equations

Recently generalized to
stochastic differential
equations

Still O(1) memory and can use + ﬁ*ﬁ.
adaptive SDE solvers - B bl wati “,1 SRR " 7
p

w s e NFWVF -

Bayesian model with prior and
approximator posterior SDES

Handles unseen interventions

t
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit. Tzen & Raginsky (2019)
Scalable Gradients for Stochastic Differential Equations. Li, Wong, Chen, Duvenaud (2020)

Neural Stochastic Differential Equations

Trains with stochastic

variational inference, scalable
In number of parameters and t 40
state dimension 30

10 —20

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit. Tzen & Raginsky (2019) o7
Scalable Gradients for Stochastic Differential Equations. Li, Wong, Chen, Duvenaud (2020)

Differentiable optimization

Outline

98

Differentiable optimization

DEQs and Neural ODEs both impose substantial
structure on the nature of the layer, in order to
gain substantial representational power

Other common strategy for imposing a different
(but related) kind of structure is that of
differentiable optimization

Layer of the form

z* = argmin f(z,x)
z€C(x)

99

Differentiating optimization problems

How do we differentiate through a layer?
z* = argmin f(z,x)
zeC(x)

Finding a solution to constrained optimization is equivalent to finding the solution
of a of a set of nonlinear equations called KKT conditions

Find (z*,v*,*) s.t.

x . 1 T T 1. AZ — b
¢= argmin g2 Q(z)z+p(x) 2 0 G <
subject to A(x)z = b(x), 3.3 >0
G(z)z < h(x) 4N o(Gzr—h)=0

5.0z +p+ AT v +GT A =0

100

Differentiating through optimization problems

Alternatively, we can view virtually any optimization procedure as a fixed point
iteration; e.g. for projected gradient descent

Zpy1 = Projoy (2, — a0y f (2,)]
(But also true of much more sophisticated optimization approaches)

Therefore, can use differentiation of fixed point iteration to differentiate through
optimization problems!

101

Some example applications

. ‘ Learning a convex polytope from data

[Amos and Kolter., 2018]
' ’ 061 27[080
030|008 |1250
TOOIOCOK|OPY D
: . - oocO0|l08 8720
~ Solving Sudoku (w/ MNIST digits) using |7 sllocolo=s
differentiable SDP solver Wang et al., 2019] |s0sl3 ¢ ol/700
0O0dON 701 O
| 70|00 O|J 0 &
08 000oal 6

: Online Learnin;
Control Program

Controlling HVAC systems with differentiable
MPC controllers [Chen et al., 2019]

t THr = 3"8',“3‘2 Ce(re) \ >
e | @

\Differentiable MPC Policy) Gnu-RL

102

CvxpyLayers: Differentiable convex modeling

x*(0) = argmin f(x;0)

X
subjectto g(x;6) <0
h(x;0) =0

involved implementing the (potentially

complex) optimization solution method = Tensor

Differentiable optimization traditionally [C\Xpy J_> ¢ PyTorch

import cvxpy as cp
import torch

cvxpylayers too| a”OWS one to eas”y from cvxpylayers.torch import CvxpyLayer

write generic optimization problems using e
BEECE

the cvxpy library, export directly as constrainte = x o 0]

objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
bl = .Problem(objective, traints)
Tensorflow/PyTorch layers D romhon so gy Jectiver constraints

vxpylayer = CvxpylLayer(problem, parameters=[A, b], variables=[x])
_tch = torch.randn(m, n, requires_grad=True)

tc
tc torch.randn(m, requires_grad=True)

https://githubb.com/cvxgrp/cvxpylayers

c

A

b_tch =

solve the problem

solution, = cvxpylayer(A_tch, b_tch)
#

compute the gradient of the sum of the solution with respect to A, b

solution.sum().backward()

103

https://github.com/cvxgrp/cvxpylayers

Outline

Future directions

104

When to use DEQs vs Neural ODEs

Use DEQs for: Use Neural ODEs if you need:

* Drop-in implicit replacement for deep ¢ Continuous-time series models
models. * Irregular-sampled time series

* physics models
« Supervised learning

 convnets, resnets * Flexible density models
« transformers « E.g. manifolds
« Standard unsupervised learning * A homeomorphism

« E.g. Language models * warping a 3d shape

105

Open Problems and Future Directions

. Regularizing DEQs and Neural ODEs to be faster to solve

. Re-architecting models to take advantage of memory advantages
. Scaling and application of latent SDEs

. Partial differential equation (PDE) solutions as a layer

106

Future Direction: Regularizing to be Easy to Solve

How to control number of function

evaluations? tl\ NN \f/ Ay /
Idea so far for ODEs: Regularize N\ X R)
dynamics to have small derivatives. L \.\ \ A b \\\ / /S
Can trade model quality for speed. N \ } ; j / H i - t / /
/1 /

- How to train your neural ODE: the world of Jacobian and kinetic regularization.
Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, Adam M Oberman. (2020)

- Learning Differential Equations that are Easy to Solve. Kelly, Bettencourt, Johnson, Duvenaud. (2020)
107

Future Direction: Regularizing to be Easy to Solve

How to control number of function

evaluations? _0.25 10°
3 =<
: —_ —
ldea so far for ODEs: Regularize < 10-! &
dynamics to have small derivatives. X 0.159 5
av is
i %0 107° =
Can trade model quality for speed. O =
Z0.051 S 20

- . el (O
30 60 90

Average NFE

- How to train your neural ODE: the world of Jacobian and kinetic regularization.
Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, Adam M Oberman. (2020)

- Learning Differential Equations that are Easy to Solve. Kelly, Bettencourt, Johnson, Duvenaud. (2020)
108

Future Direction: Neural Partial Differential Equations

““““

TLLLLERRS
SRRV

Similar adjoint equations for
differentiating through PDEs.

P ww
P,

D

Can amortize solution of PDE
simultaneously while optimizing its
parameters.

- Learning Composable Energy Surrogates for PDE Order Reduction. Beatson, Ash, Roeder, Xue, Adams (2020)

- Amortized Finite Element Analysis for Fast PDE-Constrained Optimization.Xue, Beatson, Adriaenssens, Adams (2020)-
- Learning Neural PDE Solvers with Convergence Guarantees. Hsieh, Zhao, Eismann, Mirabella, Ermon (2020)

- Fourier Neural Operator for Parametric Partial Differential Equations. Zongyi Li, Nikola Kovachki, Azizzadenesheli, Liu,

Bhattacharya, Stuart, Anandkumar (2020) 109

Additional Code

http://github.com/rtaichen/torchdiffeq - General code for ODEs in PyTorch

http://github.com/YuliaRubanova/latent ode - PyTorch latent ODEs

http://github.com/jacobjinkelly/easy-neural-ode/ - Jax latent ODEs, FFJORD

http://github.com/google-research/torchsde/ - PyTorch latent SDEs

http://github.com/locuslab/deq - Deep Equilibrium Models

http://github.com/locuslab/mdeq - Multiscale DEQSs

http://github.com/cvxarp/cvxpylayers - Convex optimization as a layer

110

https://github.com/rtqichen/torchdiffeq
https://github.com/YuliaRubanova/latent_ode
http://github.com/jacobjinkelly/easy-neural-ode/
https://github.com/google-research/torchsde/
http://github.com/locuslab/deq
http://github.com/locuslab/mdeq
http://github.com/cvxgrp/cvxpylayers

Thank you to all our collaborators and beyond

111

Deep Implicit Layers:
Neural ODEs, Equilibrium
Models, and Beyond

http://implicit-layers-tutorial.org

-5
Input/Hidden/Output

David Duvenaud J. Zico Kolter Matt Johnson
University of Toronto Carnegie Mellon and Google Brain
and Vector Institute . Bosc.zh Center for Al %% Goo gle Brain

: VECTOR arnegie o
% Tlglﬁglﬁ%b -\7\ INSTITUTE MelloriDr @ BOSCH
V * University

112

http://implicit-layers-tutorial.org/

