Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Beyond

http://implicit-layers-tutorial.org
What do we want to do with deep learning?

"Traditional" deep learning domains

- Image classification
- Semantic segmentation
- Language modeling
- Generative models

Emerging applications

- Modeling continuous-time systems
- Solving constrained optimization
- Smooth density estimation

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019]
What do we want to do with deep learning?

“Traditional” deep learning domains

- Image classification
- Semantic segmentation
- Language modeling
- Generative models

Emerging applications

- Modeling continuous-time systems
- Smooth density estimation
- Solving constrained optimization

Implicit Layers

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019]
What is a “layer”?
A layer, for the purposes of this tutorial, is a **differentiable parametric function**

Deep learning architectures are typically constructed by composing together many such layers, then training the complete system end-to-end via backpropagation.
Explicit vs. Implicit layers

Virtually all commonly-used layers are **explicit**, in that they provide a computation graph for computing the forward pass, and backprop through that computation graph.

Implicit layers, in contrast, define a layer in terms of **satisfying some joint condition of the input and output**

- Many examples: differential equations, fixed point iteration, optimization solutions, etc

Explicit layer

\[y = f(x) \]

Implicit layer

Find \(y \) such that \(g(x, y) = 0 \)
Why use implicit layers?

1. **Powerful representations**: compactly represent complex operations such as integrating differential equations, solving optimization problems, etc.

2. **Memory efficiency**: no need to backpropagate through intermediate components, via implicit function theorem.

3. **Simplicity**: Ease and elegance of designing architectures.

4. **Abstraction**: Separate “what a layer should do” from “how to compute it”, an abstraction that has been extremely valuable in many other settings.
What do we want to do with deep learning?

“Traditional” deep learning domains

- Image classification
- Semantic segmentation
- Language modeling

Emerging applications

- Modeling continuous-time systems
- Smooth density estimation
- Solving constrained optimization
- Neural ODEs + Application to Flow-based Models

Deep Equilibrium Models

Picture credits: [Krizhevsky et al., 2012; Bai et al., 2020; Grathwohl et al., 2018; Radford et al., 2019; Keras et al., 2018; Wang et al., 2019]
This tutorial

Goal of this tutorial is to provide you with an understanding of the techniques, motivations, and applications for implicit layers in modern deep learning.

Heavy focus on:

- Mathematical foundations of implicit layers + automatic differentiation
- Examples including Neural ODEs, deep equilibrium models, differentiable optimization
- Starter code and highlights of future directions

Detailed notes + code available in companion website: http://implicit-layers-tutorial.org
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Myth: Implicit layers are new to neural networks

Reality: The history of implicit layers in deep learning goes back to the late 80s, highlighted by the papers of [Pineda, 1987] and [Almeida, 1987] (papers below, respectively), going by the name \textit{recurrent backpropagation}.

\textbf{Example 1: Recurrent backpropagation with first order units}

Consider a dynamical system whose state vector x evolves according to the following set of coupled differential equations:

$$\frac{dx_i}{dt} = -x_i + g_i (\sum w_{ij} x_j) + I_i$$

where $i=1,...,N$. The functions g_i are assumed to be differentiable and may have different forms for various populations of neurons. In this paper we shall make no

A differential equation layer!

Largely fell out of use in favor of explicit network structure

Much of the current efforts are a revisiting of this idea, using the tools and techniques of modern architectures and automatic differentiation tools.

A fixed point equation layer!
The “Implicit Layer Winter”

Although implicit layers were not prominent in ML, they did find a great number of use cases within applied engineering domains in the 90s, 2000s

Differentiable optimization

Structured Variational Autoencoder
[Johnson et al., 2016]
Differentiate through graphical model inference

\[
z_{i+1} = \arg\min_z \frac{1}{2} z^T Q(z_i) z + p(z_i)^T z
\]
subject to
\[
A(z_i) z = b(z_i) \quad G(z_i) z \leq h(z_i)
\]

OptNet
[Amos and Kolter, 2017]
Differentiable quadratic programming layer

Deep Declarative Networks
[Gould et al., 2019; Gould et al., 2016]
Parameterize layers as general (non-convex) optimization problems

\[
x^*(\theta) = \arg\min f(x; \theta)
\]
subject to
\[
g(x; \theta) \leq 0 \quad h(x; \theta) = 0
\]

CvxpyLayers
[Agarwal et al., 2019]
Differentiable convex optimization easily integrated with automatic differentiation libraries
(Smoothed) combinatorial optimization

SatNet
[Wang et al., 2019]
Solve a smoothed version of a MAXSAT satisfiability problem via differentiable semidefinite programming

Differentiable submodular optimization
[Djolonga and Krause, 2017]
Differentiate through submodular minimization problems, such as graph cuts (application to image segmentation)
Deep equilibrium models

[Bai et al., 2019; Bai et al., 2020]

Represent modern deep networks using a single implicit layer

Near state of the art performance in large scale NLP and vision tasks such as semantic segmentation (using similar training approaches / network sizes)
Ordinary Differential Equations

If a vector z follows dynamics f:

$$\frac{dz}{dt} = f(z(t), t, \theta)$$

Can find $z(t_1)$ by starting at $z(t_0)$ and integrating until time t_1:

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta) dt$$

An implicit layer: $y = \text{odeint}(f, x, t_0, t_1, \theta)$
What are Neural ODEs good for?

Equivalent to a resnet with infinitely many layers, each making an infinitesimal change.

Can be used anywhere a ResNet can.

In classifiers, data should be separable at output.

Dissecting Neural ODEs. Massaroli, Poli, Park, Yamashita, Asama (2020)
What are Neural ODEs good for?

Equivalent to a resnet with infinitely many layers, each making an infinitesimal change.

Can be used anywhere a ResNet can.

In classifiers, data should be separable at output.
Continuous-time Physical Models

Incorporate known structure or constraints, e.g. Hamiltonians, Lagrangians

\[
\ddot{q} = \left(\frac{\partial^2 L}{\partial \dot{q}^2} \right)^{-1} \left(\frac{\partial L}{\partial q} - \dot{q} \frac{\partial^2 L}{\partial q \partial \dot{q}} \right)
\]

Hamiltonian Graph Networks with ODE Integrators. Sanchez-Gonzalez, Bapst, Cranmer, Battaglia (2019)
Lagrangian Neural Networks. Cranmer, Greydanus, SHoyer, Battaglia, Spergel, Ho (2020)
Continuous Normalizing Flows

Transforms a simple density into a complex parametric density.

Change of variables formula easier to compute instantaneously.
Continuous Normalizing Flows

Score-based training scales to 1024x1024

Exact density available, but expensive

[Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole. Score-Based Generative Modeling through Stochastic Differential Equations, 2020]
Continuous Normalizing Flows

Conditional inpainting and colorization without retraining.

Requires iterative sampling procedure.

Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole. Score-Based Generative Modeling through Stochastic Differential Equations. 2020
Can also parameterize homeomorphisms (non self-intersecting maps)

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows.
Yang, Huang, Hao, Liu, Belongie, Hariharan (2019).
Continuous Normalizing Flows

Can build flexible parametric density models on manifolds (e.g. spheres)

Riemannian Continuous Normalizing Flows [Mathieu and Nickel, 2020]
Neural Ordinary Differential Equations on Manifolds. [Falorsi and Forró, 2020]
Neural Manifold Ordinary Differential Equations. [Lou et al., 2020]

Thanks to Emile Mathieu
Applications in biology

Used for modeling cellular development trajectories.

Used in convolutional u-net segmentation for colon screening.

Continuous-time Time Series Models

Can deal with data collected at irregular intervals natively.

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series. Kidger, Morrill, Foster, Lyons (2020)
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de Brouwer, Simm, Arany, Moreau. (2020)
Other Uses of Implicit Gradients

Can use implicit gradients to tune millions of hyperparameters.

Can also be used for meta-learning if inner loop is trained to convergence.

Dataset Distillation

Meta-learning (iMAML)

Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Motivating a simple implicit layer

Consider a traditional deep network applied to an input \(x \)

\[
\begin{align*}
x & \rightarrow z_1 & W_1 \rightarrow z_2 & W_2 \rightarrow z_3 & W_3 \rightarrow \cdots \rightarrow z_{k-1} & W_{k-1} \rightarrow z_k \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\end{align*}
\]

\[
z_{i+1} = \sigma(W_i z_i + b_i)
\]

We now modify this network in two ways: by re-injecting the input at each step, and by applying the same weight matrix at each iteration (weight tying)

\[
\begin{align*}
x & \rightarrow z_1 & W \rightarrow z_2 & W \rightarrow z_3 & W \rightarrow \cdots \rightarrow z_{k-1} & W \rightarrow z_k \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\end{align*}
\]

\[
z_{i+1} = \sigma(W z_i + x)
\]
Iterations of deep weight-tied models

With a weight-tied model of this form, we are applying the *same* function repeatedly to the hidden units

\[z_{i+1} = \sigma(Wz_i + x) \]

In many situations, we can design the network such that this iteration will converge to some *fixed point*, or *equilibrium point*

\[z^* = \sigma(Wz^* + x) \]

This is precisely a recurrent backpropagation network, or a (minimal) deep equilibrium model.
Let's consider a very simple form of such a fixed point layer, iterating:

\[z_{i+1} = \tanh(Wz_i + x) \]

How do we compute the fixed point?

\[z^* = \tanh(Wz^* + x) \]

How do we integrate such a layer with backprop? Does the derivative exist?

To answer this, let's see a quick demo
Differentiation notation

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m \]
Differentiation notation

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

\[\partial f(x) : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

\[\partial f(x) \in \mathbb{R}^{m \times n} \]
Differentiation notation

\[\partial_0 f(x, y) \equiv \partial g(x) \text{ where } g(x) = f(x, y) \]

\[\partial_1 f(x, y) \equiv \partial g(y) \text{ where } g(y) = f(x, y) \]
The implicit function theorem

Let $f : \mathbb{R}^p \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $a_0 \in \mathbb{R}^p$, $z_0 \in \mathbb{R}^n$ be such that

1. $f(a_0, z_0) = 0$, and

2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n}$.

Then there exist open sets $S_{a_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ containing a_0 and z_0, respectively, and a unique continuous function $z^* : S_{a_0} \rightarrow S_{z_0}$ such that

1. $z_0 = z^*(a_0)$,

2. $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$, and

3. z^* is differentiable on S_{a_0}.
The implicit function theorem

Let \(f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n \) and \(a_0 \in \mathbb{R}^p, \ z_0 \in \mathbb{R}^n \) be such that

1. \(f(a_0, z_0) = 0 \), and

2. \(f \) is continuously differentiable with non-singular Jacobian \(\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n} \).

Then there exist open sets \(S_{a_0} \subset \mathbb{R}^p \) and \(S_{z_0} \subset \mathbb{R}^n \) containing \(a_0 \) and \(z_0 \), respectively, and a unique continuous function \(z^* : S_{a_0} \to S_{z_0} \) such that

1. \(z_0 = z^*(a_0) \),

2. \(f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \), and

3. \(z^* \) is differentiable on \(S_{a_0} \).

\(f(a, z) = a^2 + z^2 - 1 = 0 \)
Let $f : \mathbb{R}^p \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $a_0 \in \mathbb{R}^p$, $z_0 \in \mathbb{R}^n$ be such that

1. $f(a_0, z_0) = 0$, and
2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n}$.

Then there exist open sets $S_{a_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ containing a_0 and z_0, respectively, and a unique continuous function $z^* : S_{a_0} \rightarrow S_{z_0}$ such that

1. $z_0 = z^*(a_0)$,
2. $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$, and
3. z^* is differentiable on S_{a_0}.

$$f(a, z) = a^2 + z^2 - 1 = 0$$
Let $f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$ and $a_0 \in \mathbb{R}^p$, $z_0 \in \mathbb{R}^n$ be such that

1. $f(a_0, z_0) = 0$, and
2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n}$.

Then there exist open sets $S_{a_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ containing a_0 and z_0, respectively, and a unique continuous function $z^* : S_{a_0} \to S_{z_0}$ such that

1. $z_0 = z^*(a_0)$,
2. $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$, and
3. z^* is differentiable on S_{a_0}.

$$f(a, z) = a^2 + z^2 - 1 = 0$$
The implicit function theorem

Let \(f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n \) and \(a_0 \in \mathbb{R}^p, z_0 \in \mathbb{R}^n \) be such that

1. \(f(a_0, z_0) = 0 \), and

2. \(f \) is continuously differentiable with non-singular Jacobian \(\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n} \).

Then there exist open sets \(S_{a_0} \subset \mathbb{R}^p \) and \(S_{z_0} \subset \mathbb{R}^n \) containing \(a_0 \) and \(z_0 \), respectively, and a unique continuous function \(z^* : S_{a_0} \to S_{z_0} \) such that

1. \(z_0 = z^*(a_0) \),

2. \(f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \), and

3. \(z^* \) is differentiable on \(S_{a_0} \).

\[
f(a, z) = a^2 + z^2 - 1 = 0
\]
The implicit function theorem

Let $f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$ and $a_0 \in \mathbb{R}^p$, $z_0 \in \mathbb{R}^n$ be such that

1. $f(a_0, z_0) = 0$, and

2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n}$.

Then there exist open sets $S_{a_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ containing a_0 and z_0, respectively, and a unique continuous function $z^* : S_{a_0} \to S_{z_0}$ such that

1. $z_0 = z^*(a_0)$,

2. $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$, and

3. z^* is differentiable on S_{a_0}.

The implicit function theorem

Let $f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$ and $a_0 \in \mathbb{R}^p$, $z_0 \in \mathbb{R}^n$ be such that

1. $f(a_0, z_0) = 0$, and

2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n}$.

Then there exist open sets $S_{a_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ containing a_0 and z_0, respectively, and a unique continuous function $z^* : S_{a_0} \to S_{z_0}$ such that

1. $z_0 = z^*(a_0)$,

2. $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$, and

3. z^* is differentiable on S_{a_0}.
Let \(f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n \) and \(a_0 \in \mathbb{R}^p, z_0 \in \mathbb{R}^n \) be such that

1. \(f(a_0, z_0) = 0 \), and

2. \(f \) is continuously differentiable with non-singular Jacobian \(\partial_1 f(a_0, z_0) \in \mathbb{R}^{n \times n} \).

Then there exist open sets \(S_{a_0} \subset \mathbb{R}^p \) and \(S_{z_0} \subset \mathbb{R}^n \) containing \(a_0 \) and \(z_0 \), respectively, and a unique continuous function \(z^* : S_{a_0} \to S_{z_0} \) such that

1. \(z_0 = z^*(a_0) \),

2. \(f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \), and

3. \(z^* \) is differentiable on \(S_{a_0} \).
4.1 Ordinary Differential Equations

There is a strong connection between the implicit function theorem and the theory of differential equations. This is true even from the historical point of view, for Picard’s iterative proof of the existence theorem for ordinary differential equations inspired Goursat to give an iterative proof of the implicit function theorem (see Goursat [Go 03]). In the mid-twentieth century, John Nash pioneered the use of a sophisticated form of the implicit function theorem in the study of partial differential equations. We will discuss Nash’s work in Section 6.4. In this section, we limit our attention to ordinary (rather than partial) differential equations because the technical details are then so much simpler. Our plan is first to show how a theorem on the existence of solutions to ordinary differential equations can be used to prove the implicit function theorem. Then we will go the other way by using a form of the implicit function theorem to prove an existence theorem for differential equations.
The implicit function theorem: derivative expression

\[f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \]
The implicit function theorem: derivative expression

\[f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \]

\[\partial_0 f(a, z^*(a)) + \partial_1 f(a, z^*(a)) \partial z^*(a) = 0 \quad \forall a \in S_{a_0} \]

\[\partial_0 f(a_0, z_0) + \partial_1 f(a_0, z_0) \partial z^*(a_0) = 0 \]
The implicit function theorem: derivative expression

\[f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0} \]

\[\partial_0 f(a, z^*(a)) + \partial_1 f(a, z^*(a)) \partial z^*(a) = 0 \quad \forall a \in S_{a_0} \]

\[\partial_0 f(a_0, z_0) + \partial_1 f(a_0, z_0) \partial z^*(a_0) = 0 \]

\[\partial z^*(a_0) = -\left[\partial_1 f(a_0, z_0)\right]^{-1} \partial_0 f(a_0, z_0) \]

Punchline: can express Jacobian matrix of solution mapping \(z^* \) in terms of Jacobian matrices of \(f \) at solution point \((a_0, z_0)\).
Differentiation of fixed point solution mappings

\[z_0 = f(z_0, a_0) \]

\[z^*(a) = f(z^*(a), a) \]

\[\partial z^*(a_0) = \partial_0 f(z_0, a_0) \partial z^*(a_0) + \partial_1 f(z_0, a_0) \]
Differentiation of fixed point solution mappings

\[z_0 = f(z_0, a_0) \]

\[z^*(a) = f(z^*(a), a) \]

\[\partial z^*(a_0) = \partial_0 f(z_0, a_0) \partial z^*(a_0) + \partial_1 f(z_0, a_0) \]

\[\partial z^*(a_0) = [I - \partial_0 f(z_0, a_0)]^{-1} \partial_1 f(z_0, a_0) \]
Connecting to automatic differentiation

1. Jacobian-vector products: \(v \mapsto \partial f(x) v \)

 JVP / push-forward / forward-mode

 build Jacobian one **column** at a time

2. vector-Jacobian products: \(w \mapsto w^T \partial f(x) \)

 VJP / pull-back / reverse-mode

 build Jacobian one **row** at a time
VJPs for fixed point solution mappings

\[
\partial z^*(a_0) = [I - \partial_0 f(z_0, a_0)]^{-1} \partial_1 f(z_0, a_0)
\]

\[
w^T \partial z^*(a_0) = w^T [I - \partial_0 f(z_0, a_0)]^{-1} \partial_1 f(z_0, a_0)
\]

\[
= u^T \partial_1 f(z_0, a_0)
\]

where \(u^T = w^T + u^T \partial_0 f(z_0, a_0) \)

Punchline: backward pass solve is a (linear) fixed point in terms of VJPs!
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Deep Equilibrium Models

The simple recurrent backpropagation cell we used previously was quite limited, in practice we want to find an equilibrium point of a more complex “cell”, and use this as our entire model (plus one additional linear layer)

\[z^* = \sigma(Wz^* + x) \quad \quad z^* = f(z^*, x, \theta) \]

Residual block, Transformer block, LSTM cell, etc (\(\theta \equiv \text{parameters of layers}\))

As motivated by the discussion on implicit differentiation, we additionally do not care how we solve for the equilibrium point, and can use any non-linear root finding algorithm to do so (and also to solve the backward pass)

How to train your DEQ

Forward pass:

• Given \((x, y)\), compute equilibrium point \(z^*\)
 \[
 z^* = f(z^*, x, \theta)
 \]

• Compute loss as some function of \(z^*, \ell(z^*, y)\)

Backward pass: Compute gradients using implicit function theorem:

\[
\partial \ell(\theta) = \partial_0 \ell(z^*, y) \left(I - \partial_0 f(z^*, x, \theta) \right)^{-1} \partial_2 f(z^*, x, \theta)
\]

Implicit differentiation-based solution, solve via indirect method
More details: how to compute the fixed point?

In practice, how do we compute the fixed point $z^* = f(z^*, x, \theta)$ (and the linear fixed point for the backward pass)?

Many possible approaches, but one method that works well in practice is *Anderson Acceleration* [Anderson, 1965; Walker and Ni, 2011], a generic method for accelerating fixed point iterations.

For the backward (linear) pass, Anderson acceleration is equivalent to the GMRES indirect method.
DEQs “One (implicit) layer is all you need”

Theorem 1: A single-layer DEQ can represent any feedforward deep network

Proof intuition: “Stack” all hidden layers together, and let f be “shifted” application of all layers (*important note:* just for theory, *not* what is done in practice)

Theorem 2: A single-layer DEQ can represent any multi-layer DEQ

Proof intuition: Two equilibrium models can again be represented as a single equilibrium model with layer again “stacked” together

But doesn’t address... existence of equilibrium point? uniqueness? stability?
Language modeling: WikiText-103

<table>
<thead>
<tr>
<th>Model</th>
<th>Perplexity</th>
<th>Memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer-XL Small</td>
<td>35.8</td>
<td>5M</td>
</tr>
<tr>
<td>DEQ-Transformer Small</td>
<td>32.4</td>
<td>4.8</td>
</tr>
<tr>
<td>70-layer TrellisNet</td>
<td>29.2</td>
<td>1.1</td>
</tr>
<tr>
<td>DEQ-TrellisNet</td>
<td>29</td>
<td>3.3</td>
</tr>
<tr>
<td>Transformer-XL Medium</td>
<td>23.6</td>
<td>9</td>
</tr>
<tr>
<td>DEQ-Transformer Medium</td>
<td>23.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Transformer-XL XLarge (TPU)</td>
<td>18.7</td>
<td>12</td>
</tr>
</tbody>
</table>
Key idea: maintain multiple spatial scales within the hidden unit of a DEQ model, and *simultaneously* find equilibrium point for all of them

ImageNet Top-1 Accuracy

- **ResNet-18**: 70.2%
- **ResNet-50**: 75.1%
- **HRNet-W18**: 76.8%
- **Single-stream DEQ**: 72.9%
- **MDEQ**: 75.5%
- **ResNet-101**: 77.1%
- **DenseNet-256**: 79.7%
- **MDEQ**: 79.2%

"Small" models (13-21M params)

"Large" models (52-81M params)
Citiscapes mIoU

<table>
<thead>
<tr>
<th>Model</th>
<th>mIoU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18-B</td>
<td>69.1</td>
</tr>
<tr>
<td>MobileNetV2Plus</td>
<td>74.5</td>
</tr>
<tr>
<td>HRNet-V2-W18</td>
<td>76</td>
</tr>
<tr>
<td>MDEQ</td>
<td>75.1</td>
</tr>
<tr>
<td>PSPNet</td>
<td>78.4</td>
</tr>
<tr>
<td>DeepLabV3</td>
<td>78.5</td>
</tr>
<tr>
<td>HRNet-V2-W48</td>
<td>81.1</td>
</tr>
<tr>
<td>MDEQ</td>
<td>80.3</td>
</tr>
</tbody>
</table>

“Small” models (4-15M params)

“Large” models (52-81M params)
Visualization of Segmentation
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Ordinary Differential Equations

If a vector \(z \) follows dynamics \(f \):

\[
\frac{dz}{dt} = f(z(t), t, \theta)
\]

Can find \(z(t_1) \) by starting at \(z(t_0) \) and integrating until time \(t_1 \):

\[
z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta) dt
\]

An implicit layer: \(y = \text{odeint}(f, x, t_0, t_1, \theta) \)

For continuously differentiable and Lipshitz \(f \), gradients always exist. (no \texttt{relu}, but \texttt{tanh} fine)
How to Solve ODEs?

Simplest way: Euler’s method. Take steps of size h in direction of f

$$z_{i+1} = z_i + hf(z_i, t_i, \theta)$$

Looks just like a residual network!
From ResNets to ODE-Nets

def $f(z, t, \theta)$:
 return nnet(z, $\theta[t]$)

def resnet(z, θ):
 for t in [1:T]:
 $z = z + f(z, t, \theta)$
 return z
From ResNets to ODE-Nets

def \(f(z, t, \theta) \):
 return nnet([z, t], \theta)

def resnet(z, \theta):
 for t in [1:T]:
 z = z + \(f(z, t, \theta) \)
 return z
From ResNets to ODE-Nets

```python
def f(z, t, θ):
    return nnet([z, t], θ)

def ODEnet(z, θ):
    return ODESolve(f, z, 0, 1, θ)
```
Residual Networks vs ODE solutions

Example: Fit $y = x^2$

ResNet can learn non-bijective transformations.
Residual Networks vs ODE solutions

Example: Fit $y = x^2$

Ode-net can only learn bijective transformations.
Adaptive ODE Solvers

Adaptive solvers:

- Usually fit a local polynomial to dynamics
- Try to estimate extrapolation error
- Need fewer evaluations of dynamics function f when dynamics are simple / well-approximated
- Can adjust tolerance / precision of solver at any time
Dynamics Become Increasingly Complex in Training

Dynamics become more demanding to compute during training.

Adapts computation time according to complexity of dynamics.

Also happens in DEQs
How to train an ODE net?

Can backprop through solver operations, but high memory cost.

\[
L(\theta) = L \left(\int_{t_0}^{t_1} f(z(t), t, \theta) \, dt \right)
\]

\[
\frac{\partial L}{\partial \theta} = ?
\]
Continuous-time Backpropagation

Standard Backprop:

$$\frac{\partial L}{\partial z_t} = \frac{\partial L}{\partial z_{t+1}} \frac{\partial f(z_t, \theta)}{\partial z_t}$$

$$\frac{\partial L}{\partial \theta} = \sum_t \frac{\partial L}{\partial z_t} \frac{\partial f(z_t, \theta)}{\partial \theta}$$

Adjoint sensitivities:
(Pontryagin et al., 1962):

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial z(t)} = \frac{\partial L}{\partial z(t)} \frac{\partial f(z(t), \theta)}{\partial z}$$

$$\frac{\partial L}{\partial \theta} = \int_{t_0}^{t_1} \frac{\partial L}{\partial z(t)} \frac{\partial f(z(t), \theta)}{\partial \theta} dt$$
Continuous-time Backpropagation

Can build adjoint dynamics with autodiff, compute all gradients with another ODE solve:

```python
def f_and_a([z, a, d], t):
    return [f, -a*df/da, -a*df/dθ]

[z0, dL/dx, dL/dθ] = ODESolve(f_and_a, [z(t1), dL/dz(t), 0], t1, t0)
```

Adjoint sensitivities: (Pontryagin et al., 1962):

\[
\frac{\partial}{\partial t} \frac{\partial L}{\partial z(t)} = \frac{\partial L}{\partial z(t)} \frac{\partial f(z(t), \theta)}{\partial z}
\]

\[
\frac{\partial L}{\partial \theta} = \int_{t_1}^{t_0} \frac{\partial L}{\partial z(t)} \frac{\partial f(z(t), \theta)}{\partial \theta} dt
\]
O(1) Memory Gradients

No need to store activations, just run dynamics backwards from output.

Can do similar trick with Reversible ResNets (Gomez et al., 2018), but must restrict architecture.

This introduces extra numerical error. If mismatch is detected, can use checkpointing to force a better match.
Deep Equilibrium Models vs Neural ODEs

Both have:

• Constant memory training
• Adjustable compute vs precision at test time
• Infinite / adjustable depth

Use neural ODEs when:

• You care about the trajectory (continuous time series, physics)
• Building normalizing flows (easier change of variable sometimes)
Normalizing Flows

Tractable probabilistic models based on change of variables

 Requires an invertible transformation

Density Estimation using Real NVP. Dinh, Sohl-Dickstein, Bengio (2017)
Continuous(-time) Normalizing Flows

Change of variables theorem:

\[x_1 = F(x_0) \implies p(x_1) = p(x_0) \left| \det \frac{\partial F}{\partial x_0} \right|^{-1} \]

Determinant is \(O(D^3) \) cost

Must design architectures to have structured Jacobian
Continuous(-time) Normalizing Flows

Change of variables theorem:

\[x_1 = F(x_0) \implies p(x_1) = p(x_0) \left| \det \frac{\partial F}{\partial x_0} \right|^{-1} \]

Determinant is \(O(D^3) \) cost

Must design architectures to have structured Jacobian

\begin{align*}
\text{Jacobian} & \quad \text{(Low rank)} & \text{(Sparse)} & \text{(Lower triangular)} \\
\end{align*}
Continuous(-time) Normalizing Flows

Change of variables theorem:

\[x_1 = F(x_0) \implies p(x_1) = p(x_0) \left| \det \frac{\partial F}{\partial x_0} \right|^{-1} \]

Determinant is \(O(D^3) \) cost

Must design architectures to have structured Jacobian

<table>
<thead>
<tr>
<th>Jacobian</th>
<th>(Low rank)</th>
<th>(Sparse)</th>
<th>(Lower triangular)</th>
</tr>
</thead>
</table>

Instantaneous change of variables:

\[\frac{dx}{dt} = f(x(t), t) \implies \frac{\partial \log p(x(t))}{\partial t} = -\text{tr} \left(\frac{\partial f}{\partial x(t)} \right) \]

Trace is always \(O(D) \) cost.

Trace allows flows at **linear cost**.
Continuous(-time) Normalizing Flows

Instantaneous change of variables:
\[
\frac{dx}{dt} = f(x(t), t) \implies \frac{\partial \log p(x(t))}{\partial t} = -\text{tr} \left(\frac{\partial f}{\partial x(t)} \right)
\]

Trace is always $O(D)$ cost.

Trace allows flows at **linear cost**.
Stochastic Estimation for CNFs

Divergence of a neural network can be computationally expensive

\[
\log p(x) = \log p(z) + \int_0^T \text{div } f \, dt \\
= \log p(z) + \int_0^T \text{tr}(J_f) \, dt
\]

trace of Jacobian is expensive
Stochastic Estimation for CNFs

Divergence of a neural network can be computationally expensive:

\[\log p(x) = \log p(z) + \int_0^T \text{div} f \, dt \]

\[= \log p(z) + \int_0^T \text{tr}(J_f) \, dt \]

\[\text{tr}(A) = E_{v \sim \mathcal{N}(0,1)}[v^T A v] \] (Hutchinson’s trace estimator)
Stochastic Estimation for CNFs

Divergence of a neural network can be computationally expensive

\[
\log p(x) = \log p(z) + \int_0^T \text{div} f \, dt \\
= \log p(z) + \int_0^T \text{tr}(J_f) \, dt \\
= \log p(z) + \mathbb{E}_{v \sim \mathcal{N}(0,1)} \left[\int_0^T v^T J_f v \, dt \right]
\]

\[
\text{tr}(A) = \mathbb{E}_{v \sim \mathcal{N}(0,1)}[v^T A v]
\]
Stochastic Estimation for CNFs

Divergence of a neural network can be computationally expensive

\[
\log p(x) = \log p(z) + \int_0^T \text{div} f \, dt
\]

\[
= \log p(z) + \int_0^T \text{tr}(J_f) \, dt
\]

\[
= \log p(z) + \mathbb{E}_{v \sim \mathcal{N}(0,1)} \left[\int_0^T v^T J_f v \, dt \right]
\]

vector-Jacobian products are cheap
What about numerical error?

Is density accurate?

Only up to solver prevision, but can choose precision at test time.

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Grathwohl, Chen, Bettencourt, Sutskever, Duvenaud
Continuous Normalizing Flows

Can also parameterize homeomorphisms (non self-intersecting maps)

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows.
Yang, Huang, Hao, Liu, Belongie, Hariharan (2019).
Continuous Normalizing Flows

Can build flexible parametric density models on manifolds (e.g. spheres)

Riemannian Continuous Normalizing Flows [Mathieu and Nickel, 2020]
Neural Ordinary Differential Equations on Manifolds. [Falorsi and Forré, 2020]
Neural Manifold Ordinary Differential Equations. [Lou et al., 2020]

Thanks to Emile Mathieu
Score-based generative modeling via SDEs

\[\text{dx} = \sigma(t) \text{d}w \quad \text{Time reversal} \quad \text{dx} = -\sigma^2(t) \nabla_x \log p_t(x) \, dt + \sigma(t) \text{d}\tilde{w} \]

Score-Based Generative Modeling through Stochastic Differential Equations. Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole. (2020)
Turning a reverse diffusion SDE into ODE

Probability flow ODE (ordinary differential equation)

\[\text{dx} = \sigma(t) \text{d}w \quad \text{dx} = -\frac{1}{2} \sigma(t)^2 \nabla_x \log p_t(x) \text{d}t \]
Score-based Continuous Normalizing Flows

Score-based training scales to 1024x1024

Exact density available, but expensive

[Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole. Score-Based Generative Modeling through Stochastic Differential Equations, 2020]
Score-based Continuous Normalizing Flows

Conditional inpainting and colorization without retraining.

Requires iterative sampling procedure.

Song, Sohl-Dickstein, Kingma, Abhishek, Ermon, Poole. Score-Based Generative Modeling through Stochastic Differential Equations. 2020
Neural ODEs for Time Series
Continuous-time Physical Models

Incorporate known structure or constraints, e.g. Hamiltonians, Lagrangians

\[\ddot{q} = \left(\frac{\partial^2 \mathcal{L}}{\partial \dot{q}^2} \right)^{-1} \left(\frac{\partial \mathcal{L}}{\partial q} - \dot{q} \frac{\partial^2 \mathcal{L}}{\partial q \partial \dot{q}} \right) \]

Hamiltonian Graph Networks with ODE Integrators. Sanchez-Gonzalez, Bapst, Cranmer, Battaglia (2019)
Lagrangian Neural Networks. Cranmer, Greydanus, SHoyer, Battaglia, Spergel, Ho, (2020)
Irregularly-timed datasets

Most patient data, business data irregularly sampled through time.

Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs

How to handle these data without binning?
Continuous-time Time Series Models

Can deal with data collected at irregular intervals natively.

Can jointly train dynamics, likelihood, and recognition network as a VAE.

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series.
Kidger, Morrill, Foster, Lyons (2020)
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de Brouwer, Simm, Arany, Moreau. (2020)
Continuous-time Time Series Models

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud. 2020
Neural Stochastic Differential Equations

Recently generalized to stochastic differential equations

Still $O(1)$ memory and can use adaptive SDE solvers

Bayesian model with prior and approximator posterior SDEs

Handles unseen interventions

Neural Stochastic Differential Equations

Trains with stochastic variational inference, scalable in number of parameters and state dimension.
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
Differentiable optimization

DEQs and Neural ODEs both impose substantial structure on the nature of the layer, in order to gain substantial representational power.

Other common strategy for imposing a different (but related) kind of structure is that of differentiable optimization.

Layer of the form

$$z^* = \arg\min_{z \in C(x)} f(z, x)$$
Differentiating optimization problems

How do we differentiate through a layer?

\[z^* = \arg\min_{z \in \mathcal{C}(x)} f(z, x) \]

Finding a solution to constrained optimization is equivalent to finding the solution of a set of nonlinear equations called KKT conditions

\[z^* = \arg\min \frac{1}{2} z^T Q(x) z + p(x)^T z \]

subject to \(A(x) z = b(x) \), \(G(x) z \leq h(x) \)

Find \((z^*, \nu^*, \lambda^*) \) s.t.

1. \(A z^* = b \)
2. \(G z^* \leq h \)
3. \(\lambda^* \geq 0 \)
4. \(\lambda^* \circ (G z^* - h) = 0 \)
5. \(Q z^* + p + A^T \nu^* + G^T \lambda^* = 0 \)
Differentiating through optimization problems

Alternatively, we can view virtually any optimization procedure as a fixed point iteration; e.g. for projected gradient descent

\[z_{k+1} = \text{Proj}_{C(x)}[z_k - \alpha \partial_0 f(z_k, x)] \]

(But also true of much more sophisticated optimization approaches)

Therefore, can use differentiation of fixed point iteration to differentiate through optimization problems!
Some example applications

Learning a convex polytope from data
[Amos and Kolter., 2018]

Solving Sudoku (w/ MNIST digits) using differentiable SDP solver [Wang et al., 2019]

Controlling HVAC systems with differentiable MPC controllers [Chen et al., 2019]
CvxpyLayers: Differentiable convex modeling

Differentiable optimization traditionally involved implementing the (potentially complex) optimization solution method. The **cvxpylayers** tool allows one to easily write generic optimization problems using the **cvxpy** library, export directly as Tensorflow/PyTorch layers.

Visit https://github.com/cvxgrp/cvxpylayers for more information and examples.
Outline

Background and applications of implicit layers

The mathematics of implicit layers

Deep Equilibrium Models

Neural ODEs

Differentiable optimization

Future directions
When to use DEQs vs Neural ODEs

Use DEQs for:

• Drop-in implicit replacement for deep models.

• Supervised learning
 • convnets, resnets
 • transformers

• Standard unsupervised learning
 • E.g. Language models

Use Neural ODEs if you need:

• Continuous-time series models
 • Irregular-sampled time series
 • physics models

• Flexible density models
 • E.g. manifolds

• A homeomorphism
 • warping a 3d shape
Open Problems and Future Directions

1. Regularizing DEQs and Neural ODEs to be faster to solve
2. Re-architecting models to take advantage of memory advantages
3. Scaling and application of latent SDEs
4. Partial differential equation (PDE) solutions as a layer
Future Direction: Regularizing to be Easy to Solve

How to control number of function evaluations?

Idea so far for ODEs: Regularize dynamics to have small derivatives.

Can trade model quality for speed.

- Learning Differential Equations that are Easy to Solve. Kelly, Bettencourt, Johnson, Duvenaud. (2020)
Future Direction: Regularizing to be Easy to Solve

How to control number of function evaluations?

Idea so far for ODEs: Regularize dynamics to have small derivatives.

Can trade model quality for speed.

- Learning Differential Equations that are Easy to Solve. Kelly, Bettencourt, Johnson, Duvenaud. (2020)
Future Direction: Neural Partial Differential Equations

Similar adjoint equations for differentiating through PDEs.

Can amortize solution of PDE simultaneously while optimizing its parameters.

Additional Code

http://github.com/rtqichen/torchdiffeq - General code for ODEs in PyTorch

http://github.com/YuliaRubanova/latent_ode - PyTorch latent ODEs

http://github.com/jacobjinkelly/easy-neural-ode/ - Jax latent ODEs, FFJORD

http://github.com/google-research/torchsde/ - PyTorch latent SDEs

http://github.com/locuslab/mdeq - Multiscale DEQs

http://github.com/cvxgrp/cvxpylayers - Convex optimization as a layer
Thank you to all our collaborators and beyond
Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Beyond

http://implicit-layers-tutorial.org

David Duvenaud
University of Toronto and Vector Institute

J. Zico Kolter
Carnegie Mellon and Bosch Center for AI

Matt Johnson
Google Brain